The pillows, produced by Makura Kabushikigaisha (which, according to Rocket News 24, literally translates to Pillow Corporation), are expressly designed to give you extra walloping power while still remaining relatively harmless to the atackee. Stuffed with "perfectly weighted crushed latex," the packing peanut-esque filling adds the necessary weight to the pummeling device while remaining elastic enough to absorb most of the hit. Safety is, apparently, a major concern in professional pillow fighting, so the pillow is completely free of any tags or fasteners that might be cause for a bleeder. And it doesn't matter whether you find its grey and white stripes aesthetically pleasing—this pillow is all about function. Supposedly, this combination of colors makes it easier to notice as it comes in for the kill. The pillow will set you back a cool $30. More here.
Mar 2, 2014
You Can Now Buy the Official Pillow-Fighting Pillow of Japan
The pillows, produced by Makura Kabushikigaisha (which, according to Rocket News 24, literally translates to Pillow Corporation), are expressly designed to give you extra walloping power while still remaining relatively harmless to the atackee. Stuffed with "perfectly weighted crushed latex," the packing peanut-esque filling adds the necessary weight to the pummeling device while remaining elastic enough to absorb most of the hit. Safety is, apparently, a major concern in professional pillow fighting, so the pillow is completely free of any tags or fasteners that might be cause for a bleeder. And it doesn't matter whether you find its grey and white stripes aesthetically pleasing—this pillow is all about function. Supposedly, this combination of colors makes it easier to notice as it comes in for the kill. The pillow will set you back a cool $30. More here.
Mar 1, 2014
You'll Never Believe All The Things Made Out Of Chicken Feathers
It all began in 1993, according to Modern Farmer, when USDA researcher Walter Schmidt decided to turn chicken feathers into... something useful. That thing, whatever it was, would remain TBD. They fried it (which apparently tasted a lot like pork rinds). They made it into paper (which turned out textured and tissue-like).
The latest idea is plastics. Not unlike our hair and nails, chicken feathers are mostly a strong protein called keratin. The feathers can be heated, mixed with other materials, and molded into plastic. And, as we in the 21st century know, plastics can be used to make pretty much everything, from shoes to wall insulation to circuit boards to furniture. But chicken feathers could even show up in a few more unexpected places.
Like powder makeup:
Or diapers:For example, the Nixa, Missouri-based Featherfiber Corp. is commercializing Schmidt's group's 1998 patent on technology to separate feather fiber from the quill. Close to opening a production plant, Schmidt says they will soon produce cosmetics and car parts. "The feather fiber grinds to a powdery talc making the keratin useful in beauty products," Schmidt adds.
There are lots more chicken feather ideas in the works, from oil spill cleanup to hurricane-proof roofing. In fact, Schmidt, the chicken feather evangelist, likes to speculate about the day when chicken feathers become so useful that meat is a mere byproduct of feather production. More here.Feathers have even been used to replace the absorptive layer in diapers that are usually made out of wood pulp, also called "fluff pulp." Swapping wood pulp out for feathers may save more than a few trees, Schmidt points out. Plus, it just works really well.
Feb 26, 2014
Offshore Wind Farms Might Save Us From Hurricanes
In the matchup of wind turbine v. hurricane, our bets have traditionally been with the hurricane. But think about it this way: wind turbines are designed to suck energy out of wind. What if they could suck out so much energy that hurricanes like Katrina or Sandy never form in the first place—with the potentially destructive storm instead spun directly into electricity? That's the win-win situation posited in a new study from Stanford and University of Delaware researchers.
The study, published in the journal Nature Climate Change today, has been provoking scientists since it was first presented at conferences months ago. It's surprising, in part, because it inverts how we usually think about offshore wind turbines.
"Will the turbines be destroyed? That's the main question people ask," says Mark Jacobson, the study's first author. According to their model of Hurricanes Isaac, Katrina, and Sandy, though, offshore wind turbines could have dissipated the storms before their winds even got up to destructive speeds. And the turbines would have turned that wind into electricity, a benefit over other hurricane defense strategies like sea walls.
Will it work? How?
There are exactly zero operating offshore wind farms in the United States right now— northwestern Europe has most of the existing ones—and the farms in the study are unthinkably massive, up to half a million turbines. As a matter of practicality and politics, this isn't going to happen anytime soon. But if we want to dream big about energy policy and hurricane defense, then this is that dream.
And it could theoretically work, according to other scientists. "The study is highly academic and idealized," says Robert Vautard of the Climate and Environment Science Laboratory in France, although "the result is believable." It's all based on a computer model, but it's the best computer model we have.
Think about how quickly hurricanes dissipate on land, says Julie Lindquist, an atmospheric scientist at University of Colorado, Boulder. That's, in part, because the sea surface is very smooth but land is not. "You're essentially building large forests of slender trees in the water," says Lindquist. Of course, that will affect the climate during non-hurricane season, too, but that's a whole other study to do.
When it comes to natural disasters, engineers have come up with ways to withstand them, but never actually tame them. These hurricane-harnessing wind turbines offer a seductively elegant and presently impractical solution to it all. It's possible to imagine—and also question—the potential of tens of thousands of turbines spinning offshore to power and guard our homes from hurricanes. More here.
Feb 24, 2014
Whoa, Watch Bacteria Instantly Turn Water Into Ice
Believe it or not, making ice is more complicated than just making water really cold. One thing that helps is bacteria. Yes, bacteria! In this captivatingly magic video, it takes just a second for Pseudomonas syringae to turn a whole jar of water into ice.
How does it work? It's the same principle behind how snow forms in the atmosphere. An ice crystal needs to form around a nucleus, which can be a bit of dust, soot, pollen, or, as we've seen, bacteria. Pure water doesn't have to crystallize into ice until it's as cold as 55 F below zero. In the demo here, the water has been supercooled to about 21 F, but it only freezes over after the P. syringae is added.
Maggie Koerth-Baker, who first spotted the video for Boing Boing, explains where P. syringae's cold superpower comes from.
P. syringae gets this skill from the proteins that cover its surface membrane. The proteins basically form a physical structure that water molecules latch onto. That structure also orients the molecules in a way that prompts the formation of ice crystals. It's these proteins that really serve as the instigator of ice nucleation and they're incredibly efficient at it — far more so than dust...
Commercial snow machines use the proteins (though not the bacteria itself) to help instigate the creation of snow on ski mountains.
We humans might think ourselves clever using bacteria proteins to make artificial snow for ski resorts, but the microbes have been way ahead of us.
A Simple Trick to Keep Your GoPro Footage Steady
The above video from professional wakeboarder and video producer MicBergsmademonstrates a simple tip to help you get better results from your GoPro: Hold the GoPro up to your face to use your body's natural stabilization to your advantage. While I've never tried this with a GoPro, it's very similar to clenching a heavy DSLR up against your body, using it as a natural tripod when you're shooting at very slow shutter speeds. It's a common photographer's trick. Of course, MicBergsma's trick isn't going to work in all situations, but it's just another tool to throw on the heap so you can get better footage from you adventures.
Feb 22, 2014
Wheelchair-Bound Woman Walks Again With a 3D Printed Exoskeleton
In 1992, Amanda Boxtel suffered a vicious skiing accident that left her paralyzed from the waist down. Doctors said she would never walk again. This week, she proved them wrong, with the help of the world's first 3D printed exoskeleton that gives her the ability to climb out of her wheelchair and walk once again.
The Ekso-Suit Amanda wears is fully bespoke. 3D Systems used data from a full body scan to print custom-tailored pieces that fit exactly to Amanda's body. Mechanical components from EksoBionics provide the automation, allowing Amanda to safely use her legs and a pair of canes to walk around.
Feb 21, 2014
Hipsters Can Ride This Tiny Fixie Across Their Next Gluten-Free Pizza
Feb 20, 2014
Can You Actually Drink Too Much Water?
We've all heard horror stories of water intoxication, where it's claimed people drink too much water and, ultimately, die. But is it really true?
Short answer: yes. But watch this ASAP Science video to find out that, in reality, it is actually very unlikely that you'll ever have to worry about it.
Scientists Turn Off Pain Using Nothing But Light
Pain is a hard problem. Sure, we can throw a little morphine at pain in the short term, but researchers continue to struggle with solutions for chronic pain. New research from Stanford's futuristic Bio-X lab looks like a light at the end of the tunnel—literally!
Put simply, a team of scientists has developed a way to turn pain on and off using light. They used a technique known as optogenetics to insert light-sensitive proteins called opsins into the nerves of lab mice. After a couple of weeks, the nerves became light-sensitive. One color of light would increase the sensation of pain; another would decrease it. This bears huge implications in a number of fields, from neuroscience to psychology, and could help millions of people who suffer from chronic pain.
So that's pretty awesome. What's even more impressive is the fact that researchers made the discovery by accident. Optogenetics is a burgeoning field pioneered by Karl Deisseroth who was a co-author of a study about the new technique published this week in Nature Biotechnology. It enables scientists to control nerves using just light. Scott Delp, whose lab made the discovery, was exploring the use of optogenetics to control muscle movement when he found that the opsins were also affecting the nerves that controlled pain. "We thought 'wow, we're getting pain neurons, that could be really important,'" Delp said in a statement.
The excitement offered by optogenetics don't stop at pain relief, of course. Just a few months ago, scientists also figured out how to control hunger using opsins and light therapy. Experts say the field could impact everything from brain disease to alcoholism. And they make it look so easy. More here.
Put simply, a team of scientists has developed a way to turn pain on and off using light. They used a technique known as optogenetics to insert light-sensitive proteins called opsins into the nerves of lab mice. After a couple of weeks, the nerves became light-sensitive. One color of light would increase the sensation of pain; another would decrease it. This bears huge implications in a number of fields, from neuroscience to psychology, and could help millions of people who suffer from chronic pain.
So that's pretty awesome. What's even more impressive is the fact that researchers made the discovery by accident. Optogenetics is a burgeoning field pioneered by Karl Deisseroth who was a co-author of a study about the new technique published this week in Nature Biotechnology. It enables scientists to control nerves using just light. Scott Delp, whose lab made the discovery, was exploring the use of optogenetics to control muscle movement when he found that the opsins were also affecting the nerves that controlled pain. "We thought 'wow, we're getting pain neurons, that could be really important,'" Delp said in a statement.
The excitement offered by optogenetics don't stop at pain relief, of course. Just a few months ago, scientists also figured out how to control hunger using opsins and light therapy. Experts say the field could impact everything from brain disease to alcoholism. And they make it look so easy. More here.
Feb 19, 2014
This Perfectly Counterbalanced Supervillain Table Will Never Fall Over
When decorating their over-the-top headquarters, supervillains need to choose bold office furniture that matches their even bolder schemes to take over the world. And designer Toni Grilo delivers with this gravity-defying coffee table, which looks like it's perpetually on the verge of falling over.
But like any great supervillain, the Lithos Table is actually really hard to topple. Made from pieces of black-veined aziza marble, the table looks like it's one large piece of stone, but on the inside it's engineered to be light and incredibly stable thanks to a counterbalance system that no one ever sees.
Although pricing details aren't known yet, it's safe to assume that when the Lithos Table is available from Haymann you'll probably need a decent stash of cash to afford it. But with a couple of strategic ransoms and kidnappings, even a regular villain could probably raise enough cash in no time. More here.
But like any great supervillain, the Lithos Table is actually really hard to topple. Made from pieces of black-veined aziza marble, the table looks like it's one large piece of stone, but on the inside it's engineered to be light and incredibly stable thanks to a counterbalance system that no one ever sees.
Although pricing details aren't known yet, it's safe to assume that when the Lithos Table is available from Haymann you'll probably need a decent stash of cash to afford it. But with a couple of strategic ransoms and kidnappings, even a regular villain could probably raise enough cash in no time. More here.
Facebook Is Buying Messaging App WhatsApp for $16 Billion
Facebook just entered into an agreement to buy the hugely popular messaging app, which recently passed the milestone of 450 million active monthly users. The cost? $16 billion (more on the price below). Wow.
According to the Facebook release, WhatsApp has 450 million active monthly users and is adding one million users per day. That's an impressive clip.
Wait...How Much?
According to the release, the purchase price is $4 billion in cash, $12 billion in Facebook stock, plus another $3 billion in restricted stock given to the founders and employees, which vests after four years. If you see a $19 billion number floating around out there, that's why. In other words, everyone who works for the company now has a huge incentive to stay on—and it shows that Facebook is interested in the talent that worked on the service, in addition to the platform itself.What the heck is WhatsApp?
WhatsApp is a cross-platform messaging service that works on iOS, Android, Blackberry,Windows Phone, and yes, even Nokia's dying Symbian OS. It's basically messaging that works over your data connection or Wi-Fi instead of SMS—much like iMessage, except it works for everything. WhatsApp does multimedia, it does group chat, and it's widely used internationally. It's free for the first year, and then just $1 per year after that.According to the Facebook release, WhatsApp has 450 million active monthly users and is adding one million users per day. That's an impressive clip.
Why Does Facebook Want WhatsApp?
Facebook has been trying to nail down messaging for some time now. There were rumors that Facebook offered Snapchat $3 billion in cash, which only happened after Facebook tried to build its own version of Snapchat. Facebook Messenger is actually a nice product that works over data internationally, much like WhatsApp. Unfortunately, people don't use it, or rather, it's not incorporated into people's lives in the way text messaging is—and that's what Facebook needs. What's more, given Facebook's huge international reach, trying to edge out competitors on that front is a really smart move.What's Going to Change?
According to a blog post on WhatsApp's website, absolutely nothing. Here's what co-founder Jan Koum had to say on the topic:Do you use WhatsApp?WhatsApp will remain autonomous and operate independently. You can continue to enjoy the service for a nominal fee. You can continue to use WhatsApp no matter where in the world you are, or what smartphone you're using. And you can still count on absolutely no ads interrupting your communication. There would have been no partnership between our two companies if we had to compromise on the core principles that will always define our company, our vision and our product.
Feb 18, 2014
Pomegranate-Inspired Batteries Hold 10x The Juice
A team of Stanford scientists recently made a breakthrough. After years of trying to create a new generation of lithium-ion batteries that use energy-efficient silicon to hold a charge, they found the secret to the winning design in an unlikely place: pomegranates.
The problem with using silicon in batteries is two-fold. For one, the fragile material swells and breaks during charging. It also tends to react with batteries' electrolytes and gunk up the circuits. But silicon can also store up to ten times as much charge as existing rechargeable lithium-ion batteries.
To avoid the material's downfall, the Stanford scientists drew inspiration from the way that pomegranate seeds come in clusters. They decided to use silicon nanowires that are too small to break and encase them in carbon "yolk shells" that would allow for some swelling. (See diagram to the left.) The yolk shells were then arranged like pomegranate seeds so that they would conduct electricity well without exposing the silicon. The new, pomegranate-inspired geometry works wonderfully.
"While a couple of challenges remain, this design brings us closer to using silicon anodes in smaller, lighter and more powerful batteries for products like cell phones, tablets and electric cars," said Stanford professor Yi Cui in a statement. "Experiments showed our pomegranate-inspired anode operates at 97 percent capacity even after 1,000 cycles of charging and discharging, which puts it well within the desired range for commercial operation."
Can you imagine if your smartphone bettery held ten times the charge it does now? Life would be wonderful! Of course, it'll take some time for this new technology to be implemented, so don't stop carrying around your charger. Yet. More here.
The problem with using silicon in batteries is two-fold. For one, the fragile material swells and breaks during charging. It also tends to react with batteries' electrolytes and gunk up the circuits. But silicon can also store up to ten times as much charge as existing rechargeable lithium-ion batteries.
To avoid the material's downfall, the Stanford scientists drew inspiration from the way that pomegranate seeds come in clusters. They decided to use silicon nanowires that are too small to break and encase them in carbon "yolk shells" that would allow for some swelling. (See diagram to the left.) The yolk shells were then arranged like pomegranate seeds so that they would conduct electricity well without exposing the silicon. The new, pomegranate-inspired geometry works wonderfully.
"While a couple of challenges remain, this design brings us closer to using silicon anodes in smaller, lighter and more powerful batteries for products like cell phones, tablets and electric cars," said Stanford professor Yi Cui in a statement. "Experiments showed our pomegranate-inspired anode operates at 97 percent capacity even after 1,000 cycles of charging and discharging, which puts it well within the desired range for commercial operation."
Can you imagine if your smartphone bettery held ten times the charge it does now? Life would be wonderful! Of course, it'll take some time for this new technology to be implemented, so don't stop carrying around your charger. Yet. More here.
What happens when you reach level 999 of Flappy Bird
The video is obviously but wonderfully doctored by the guys at pipocaVFX but it's pretty perfect. If you're an impatient type, fast forward to around the one minute mark to get right to the end where level 999 starts.
Feb 17, 2014
Why Your Mouse Cursor Is Slanted Instead of Straight
Have you ever wondered why your mouse cursor rests ever so slightly to the left? Chances are, that little arrow on an incline is so ubiquitous that you've never even thought twice about its 45-degree lean. As it turns out, there's a very good reason for it. Or was, anyway, back in a more pixelated age.
Over on Stack Exchange, computer software developer Bart Gijssens revealed the following explanation of the slanted cursor's origins in response to this question on its design.
The mouse, and therefore the mouse cursor, was invented by Douglas Englebart, and was initially an arrow pointing up.
When the XEROX PARC machine was built, the cursor changed into a tilted arrow. It was found that, given the low resolution of the screens in those days, drawing a straight line and a line in the 45 degrees angle was easier to do and more recognizable than the straight cursor.
As you can see below, the original, straight cursor was indeed much more difficult to pick out amongst the blocks of basic text. And as Gijssens points out in a later edit, after Englebart created the left-leaning cursor, Steve Jobs borrowed it for his software followed by Bill Gates who borrowed it after him. At this point, we've just become so accustomed to our leaning (and still highly functional!) arrow that anything else would seem too bizarre. Besides, why mess with perfection? More here.
Over on Stack Exchange, computer software developer Bart Gijssens revealed the following explanation of the slanted cursor's origins in response to this question on its design.
The mouse, and therefore the mouse cursor, was invented by Douglas Englebart, and was initially an arrow pointing up.
When the XEROX PARC machine was built, the cursor changed into a tilted arrow. It was found that, given the low resolution of the screens in those days, drawing a straight line and a line in the 45 degrees angle was easier to do and more recognizable than the straight cursor.
As you can see below, the original, straight cursor was indeed much more difficult to pick out amongst the blocks of basic text. And as Gijssens points out in a later edit, after Englebart created the left-leaning cursor, Steve Jobs borrowed it for his software followed by Bill Gates who borrowed it after him. At this point, we've just become so accustomed to our leaning (and still highly functional!) arrow that anything else would seem too bizarre. Besides, why mess with perfection? More here.
Feb 15, 2014
Draw a Straight Line or a Skyline With These Famous City Rulers
A ruler's traditionally a straightforward thing, but that doesn't mean it has to be boring. These pretty pieces from Monkey Business give you a measuring edge when you need it, and a city skyline stencil when you're feeling playful.
The Skyline Ruler is available in seven cityscapes: London, Paris, NYC, Berlin, Amsterdam, Toronto, and Jerusalem. Each $9 plastic piece has a full 20cm ruler on the bottom edge (yes, even the NYC ruler is in metric). There's something fun about a well-made stencil, and buying one that's also a ruler feels slightly less superfluous. Is it functional? Sure! Especially if you happen to have the type of job where you need to sketch a highly accurate skyline at a moment's notice. More here.
The Skyline Ruler is available in seven cityscapes: London, Paris, NYC, Berlin, Amsterdam, Toronto, and Jerusalem. Each $9 plastic piece has a full 20cm ruler on the bottom edge (yes, even the NYC ruler is in metric). There's something fun about a well-made stencil, and buying one that's also a ruler feels slightly less superfluous. Is it functional? Sure! Especially if you happen to have the type of job where you need to sketch a highly accurate skyline at a moment's notice. More here.
Feb 14, 2014
This Graphene Nanoribbon Conducts Electricity Insanely Fast
You're looking a ribbon of graphene that's just one atom thick and fifteen atoms wide—and it could help shift data thousands of times faster than anything else currently can.
The nanoribbons, produced Felix Fischer, a chere.hemist at Berkeley, are narrow—10,000 of them placed side by side would be about as wide as a human hair—and straight. That means that electrons can travel along them with no atoms to block their way, transporting current thousands of times faster than any other existing conductor—at least, over short distances. In turn, that means transistors can be switched on and off much faster, wildly increasing the speed of circuits.
Interestingly, the ribbons aren't sculpted out of graphene, but rather grown chemically, by heating rings of carbon and hydrogen so they slowly link, forming long daisy chains. Then, they're heated again to shift the hydrogen, leaving long ribbons of carbon-carbon bonds like those in the image above, which was captured using a scanning tunneling microscope. More here.
The nanoribbons, produced Felix Fischer, a chere.hemist at Berkeley, are narrow—10,000 of them placed side by side would be about as wide as a human hair—and straight. That means that electrons can travel along them with no atoms to block their way, transporting current thousands of times faster than any other existing conductor—at least, over short distances. In turn, that means transistors can be switched on and off much faster, wildly increasing the speed of circuits.
Interestingly, the ribbons aren't sculpted out of graphene, but rather grown chemically, by heating rings of carbon and hydrogen so they slowly link, forming long daisy chains. Then, they're heated again to shift the hydrogen, leaving long ribbons of carbon-carbon bonds like those in the image above, which was captured using a scanning tunneling microscope. More here.
NASA Sees Mysterious Heart in The Darkness of Space
The Chandra X-Ray Observatory has captured this Heart in the Darkness, for all of you astronomers in love out there, "a heart-shaped cloud of 8 million-degree Celsius gas in the central region of the star cluster NGC 346. NASA says that the "the nature of the heart in the darkness will remain mysterious" until they make future observations.
Here are their theories right now:
Here are their theories right now:
Evidence from radio, optical and ultraviolet telescopes suggests that the hot cloud, which is about 100 light years across, is the remnant of a supernova explosion that occurred thousands of years ago.The progenitor could have been a companion of the massive young star that is responsible for the bright X-ray source at the top center of the image. This young star, HD 5980, one of the most massive known, has been observed to undergo dramatic eruptions during the last decade. An alternative model for the origin of the hot cloud is that eruptions of HD 5980 long ago produced the cloud of hot gas, in a manner similar to the gas cloud observed around the massive star Eta Carinae. Future observations will be needed to decide between the alternatives. Until then, the nature of the heart in the darkness will remain mysterious. More here.
Feb 12, 2014
A Tiny New Chip Promises Internet 400 Times Faster Than Google Fiber
IBM researchers in Switzerland just unveiled the prototype for an energy efficient analog-to-digital converter (ADC) that enables connections as fast as 400 gigabits per second. That's 400 times faster than Google Fiber and about 5,000 times faster than the average U.S. connection. That's fast enough to download a two-hour-long, 4K ultra high definition movie in mere seconds. In short, that's incomprehensibly fast.
The ADC chip itself was actually built for loftier purposes than downloading episodes ofPlanet Earth, though. It's actually bound for the Square Kilometer Array in Australia and South Africa to help us peer hundreds of millions of light years into space, hopefully to give us a better idea of what the universe was like around the time of the Big Bang. This massive radio telescope will devour data, too. It's expected to gather over an exabyte every day when it's finished in 2024. That's over 100 billion gigabytes.
Believe it or not, 400 gigabit isn't even the fastest connection the world has seen. For that you'll have to go to the United Kingdom where researchers recently developed 1.4 terabit internet using commercial-grade hardware. That's warp speed. More here.
The ADC chip itself was actually built for loftier purposes than downloading episodes ofPlanet Earth, though. It's actually bound for the Square Kilometer Array in Australia and South Africa to help us peer hundreds of millions of light years into space, hopefully to give us a better idea of what the universe was like around the time of the Big Bang. This massive radio telescope will devour data, too. It's expected to gather over an exabyte every day when it's finished in 2024. That's over 100 billion gigabytes.
Believe it or not, 400 gigabit isn't even the fastest connection the world has seen. For that you'll have to go to the United Kingdom where researchers recently developed 1.4 terabit internet using commercial-grade hardware. That's warp speed. More here.
Feb 11, 2014
A Double Chamber Bike Tire Helps Prevent Flats When You Ride Off-Road
Those big chunky tires used on mountain bikes don't just help plow through rough terrain and absorb shocks. When under-inflated, they also have a much larger footprint for extra grip on uneven surfaces—but there's a tradeoff. When an impact compresses the inner tube too far it can cause what's known as snake bite punctures, an all too common problem faced by bikers that a new double-chambered tire might solve.
As the double valves indicate, the new tire—jointly developed by Schwalbe and bike accessory maker Syntace—features a chamber next to the rim which can be pumped up to higher pressures, preventing it from squishing to the point of puncturing. And it sits next to an outer chamber that can be inflated to lower pressures, so it's able to spread out for improved traction and compress better over bumpy terrain.
The tire—which is still being perfected and will hopefully be available later this year—is an improvement to the tubeless design that's often used in off-road wheels. Previous tubeless tires could be inflated to low pressures with less of a risk of impact punctures, but it also increased the chances of the tire popping off the rim. Since the higher-pressure inner chamber hugs the rim with this new design, that shouldn't be a problem. More here.
As the double valves indicate, the new tire—jointly developed by Schwalbe and bike accessory maker Syntace—features a chamber next to the rim which can be pumped up to higher pressures, preventing it from squishing to the point of puncturing. And it sits next to an outer chamber that can be inflated to lower pressures, so it's able to spread out for improved traction and compress better over bumpy terrain.
The tire—which is still being perfected and will hopefully be available later this year—is an improvement to the tubeless design that's often used in off-road wheels. Previous tubeless tires could be inflated to low pressures with less of a risk of impact punctures, but it also increased the chances of the tire popping off the rim. Since the higher-pressure inner chamber hugs the rim with this new design, that shouldn't be a problem. More here.
Feb 9, 2014
Hack a 3D Printer Into a Surprisingly Skilled Air Hockey Robot
Good news for anyone who dropped a small fortune on a 3D printer and found themselves bored of creating novelty keychains and meme-based figurines. Jose Julio successfully turned the parts needed to build a RepRap 3D printer into an air hockey-playing robot that looks pretty tough to beat.
If your roommates or family straight-up suck at air hockey and you want a real challenge, Jose has posted detailed build instructions here, as well as 3D models and requisite software here. The usual caveats apply in terms of having some pre-existing level of skill to build your own—this isn't like putting together a Lego kit—but the good news is that you can probably turn it back into a 3D printer to fix or replace whatever it is you smash after continuously losing.
Subscribe to:
Posts (Atom)