The nanoribbons, produced Felix Fischer, a chere.hemist at Berkeley, are narrow—10,000 of them placed side by side would be about as wide as a human hair—and straight. That means that electrons can travel along them with no atoms to block their way, transporting current thousands of times faster than any other existing conductor—at least, over short distances. In turn, that means transistors can be switched on and off much faster, wildly increasing the speed of circuits.
Interestingly, the ribbons aren't sculpted out of graphene, but rather grown chemically, by heating rings of carbon and hydrogen so they slowly link, forming long daisy chains. Then, they're heated again to shift the hydrogen, leaving long ribbons of carbon-carbon bonds like those in the image above, which was captured using a scanning tunneling microscope. More here.
No comments:
Post a Comment